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Storfjorden 

Dense water formation 

Sill at 115m 

Plume encounters  
Atlantic Water  
at ~200-500m 

In some years plume 
sinks to >2000m 

Path: Quadfasel et al. (1988), Fer and Adlandsvik (2008). Bathymetry from IBCAO 2.23 (Jakobsson et al., 2008) 



The big question 

• In some years the Storfjorden cascade has been 
observed to pierce the Atlantic Layer and reach 
depths of over 2000m. 

• At other times the cascade was arrested within 
the layer of Atlantic Water.   

• The eventual depth of the cascaded waters has a 
proven effect on the maintenance of the Arctic 
halocline and (when piercing occurs) the 
ventilation of the deep Arctic basins.  

• Can we predict when the cascade will be arrested 
and when it will pierce the Atlantic Water?  
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3-D numerical model 

• Ocean circulation model NEMO Shelf v3.2 

• Horizontal: 109 x 109 grid (1km resolution) 

• Vertical: 42 levels 

 Modified s-coordinate system 

• Ivanov & Watanabe (2011), Enriquez et al. (2005) 

 Adapted Laplacian diffusion operator rotation 

 Bottom boundary condition 

 Vertical Piecewise Parabolic advection scheme 

 Pressure Jacobian HPG scheme 
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Model setup 
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East Spitsbergen Water - ESW (0.5°C, 34.75) 

Norwegian Sea Deep Water – NSDW (-1°C, 34.90) D
ep

th
 (

m
) 

Atlantic Water – AW (2°C, 35.00) 



Model setup 
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East Spitsbergen Water - ESW (0.5°C, 34.75) 

Norwegian Sea Deep Water – NSDW (-1°C, 34.90) D
ep

th
 (

m
) 

Storfjorden Overflow Water - SFOW 
(-1.95°C, S=34.75  35.81) 

Atlantic Water – AW (2°C, 35.00) 



Modified s-coord. system 
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Modelled flow 

Arrested within AW Piercing into NSDW 
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Q = 0.01 Sv, S = 35.40 Q = 0.05 Sv, S = 35.20 



Modelled flow 

Arrested within AW Piercing into NSDW 

11 

Q = 0.01 Sv, S = 35.40 Q = 0.05 Sv, S = 35.20 



Modelled flow 

Arrested within AW Piercing into NSDW 
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Q = 0.01 Sv, S = 35.40 Q = 0.05 Sv, S = 35.20 

Wobus et al. (2012) Ocean Modelling, submitted 



Deep warm signal 

• In case of strong cascading the piercing of the 
Atlantic Layer results in a temperature gain in 
NSDW.  

 

• This is caused by  
warming of the  
plume while it  
propagates through  
the warm AL 

 



Cascading regimes 
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Cascading regimes 

• Arrested 
 plume remains within or just below the AL 
 Schauer & Fahrbach (1999) 

• Piercing 
 plume pierces the Atlantic Layer and reaches 1500m 
 Quadfasel et al. (1988) 

 
• Shaving (intermediate regime) 

 a portion of the plume detaches off the bottom, 
intrudes into the AL while the remainder continues its 
downslope propagation 

 Inferred from observations by Aagaard et al. (1985) 



Can the regime be predicted from the initial 
conditions alone? 

 

• Flow rate Q 

• Salinity S 



        Tracer penetration   
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500 < z < 1000m  
AW-NSDW interface 

z > 1000m 
NSDW 



Tracer penetration (S-Q space) 

500 < z < 1000m  
AW-NSDW interface 

z > 1000m 
NSDW 
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Tracer penetration (S-∆PE space) 
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NOTE: Y-axis  ∆PE = PEend – PEt=0       (PE = Potential Energy , J/m3) 

500 < z < 1000m  
AW-NSDW interface 

z > 1000m 
NSDW 

Wobus et al. (2012) Ocean Modelling, submitted 



Conclusions 

• Model reproduces well the essential features of 
the plume’s mixing with Atlantic Water 

 e.g. temperature increase at depth, 
as well as warm upwelling 

• Fate of the cascade (e.g. depth penetration) is 
predictable from initial conditions (S & Q) 

 Crucial forcing parameter is thus the flux of 
potential energy (ΔPE) into the system 
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Current work 

• Influence of cascading on  
larger-scale ocean circulation? 

 Realistic bathymetry 

 Nested in global model 

• Open boundaries 

• Realistic initial conditions 

• Tidal forcing 

 Meteorological forcing 

 Cascading under varying forcing conditions 
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